
A Bayesish 
perspective on 
multiple choice 
score data



Bayesian Statistics While Standing on One Leg
A screening test for a rare disease is known to be 99.9% accurate. 
You test positive. What is the probability that you have the disease?

Sick Not Sick

Test 
+ 1 1,000

Test 
- 0 998,999

Case 1: Low-Risk Population 
Incidence is 1 in 1,000,000
So out of 1,000,000 people:

● 1 person is sick
● 999,999 are not

Of those who test positive:
● 99.9% are well! 
● Only 0.1% are sick

Case 2: High-Risk Population 
Incidence is 1 in 1,000
So out of 1,000,000 people:

● 1,000 people are sick
● 999,000 are not

Of those who test positive:
● 50% are well! 
● 50% are sick

Sick Not 
Sick

Test 
+ 999 999

Test 
- 1 998,001



A simple mathematical model of 4-choice 
multiple choice testing situations

● A known proportion of students, p, select the correct response.
● Some unknown proportion of students, k, know the correct 

answer.
● Everyone else guesses; 25% of them guess right.
● So in every case, k ≤ p.
● We can say, p = k + ¼ (1-k)  (just an estimate!)
● We can solve for k (again, just an estimate!): k = (4/3)p - ⅓ 
● Intuitively, if 1,000 students are asked a 4-choice question and 

they all choose the right answer, no one guessed. 
Conversely, if 25% choose the right answer, everyone guessed.



If 40% of students chose the right answer to an item 
(p=0.40), half of them guessed
If 60% of students chose the right answer to an item 
(p=0.60), only 22% of them guessed

But we can do better than this.
We don’t just have student responses to individual items. 
We also have overall scores, and we can segment the overall population on 
that basis.
Suppose that the p-value for an item is 0.25 for the bottom quartile, and 0.90 
for the top quartile.
● Of bottom quartile students who got this item correct, all guessed! None 

of them actually knew the right answer.
● Of top quartile students who got this item correct, only 4% guessed!  

96% of those who got it right did so because they knew the right answer. 



“Bayesish”???

Not quite a Bayesian approach. 
A student’s overall score isn’t exactly a “prior probability”. 
But by treating it as such, we can take advantage of Bayes’ theorem



Completing the analogy
A screening test for proficiency in a skill is known to be 75% accurate. 
A student tests positive. What is the probability that she is proficient?

Prof. Not 
Prof.

Test 
+

75 / 
100* 225

Test 
-

25 
/0* 675

Case 1: Low-Proficiency Population 
Incidence is 1 in 10
So out of 1000 students:

● 100 are proficient
● 900 are not

Of those who test positive:
● 75% are not proficient 
● 25% are proficient

Case 2: High-Proficiency Population 
Incidence is 9 in 10
So out of 1,000 students:

● 900 are proficient
● 100 are not

Of those who test positive:
At least* 96.4% are 
proficient; no more than*
3.6% are not

Prof. Not 
Prof.

Test 
+

675 / 
900* 25

Test 
-

225 / 
0* 75

*In fact, “negative tests” are much more than 75% accurate. The starred numbers are what you get if 
you assume that the false negative rate is zero, meaning that proficient students never test negative. 



Case study - A Beacon math grade 3 benchmark test

28 points possible: 18 MC, 2 2pt MCAo, 1 2-pt CR, 1 4-pt CR 
n = 2,696
Segmented students by overall score, adding adding scores symmetrically as 
necessary to ensure at least 30 students per segment.
● e.g., 306 students scored 9 (out of 28), so students scoring 9 were 

segmented on their own
● Only 14 students scored 21. To get a large enough group, students 

scoring 21 were segmented with students scoring 20 to 22 (n=42)
Two different approaches were tried for students scoring below the expected 
score for random guessing (5.4). 
● As described above (not shown here)
● all such students treated as one segment (n=272) (shown here)

Where the model estimates k≤0, I substituted k = 0.002 



3.MD.A - 1 point from 1 MC item
Raw Score Segment p k P(K|1)

5 or less 0 to 5 0.21 -0.05 0.01

6 6  0.33  0.10  0.31

7 7  0.46  0.27  0.60

8 8  0.57  0.43  0.75

9 9  0.64  0.52  0.81

10 10  0.73  0.64  0.88

11 11  0.85  0.80  0.94

12 12  0.88  0.83  0.95

13 13  0.93  0.90  0.97

14 14  0.94  0.92  0.98

15 15  0.96  0.94  0.99

If you are setting up an intervention 
for students who did not know the 
content on this question, and you 
want to include anyone who is less 
than 80% likely to have actually 
known the correct answer, then you 
should include not only all students 
who got the question wrong, but 
also ALL students who got it right, 
but also had an overall score of less 
than 9.

On this question, random guessing 
was not a material factor for 
students with an overall score of 12 
out of 28 (43%) or higher 



3.MD.A - continued
Raw Score Segment p k P(K|1)

16 16  0.95  0.94  0.98

17 17  1.00  1.00  1.00

18 18  1.00  1.00  1.00

19 18 to 20  0.99  0.98  1.00

20 19 to 21  0.98  0.98  0.99

21 20 to 22  1.00  1.00  1.00

22 20 to 24  1.00  1.00  1.00

23+ 20 and up  1.00  1.00  1.00



3.OA.A - 2 points from 2 MC items
Raw Score Segment P2 K2 P(K|2)

5 or less 0 to 5 0.11 .05 .46

6 6  0.22  0.16  0.76

7 7  0.31  0.26  0.85

8 8  0.41  0.37  0.90

9 9  0.46  0.43  0.92

10 10  0.55  0.52  0.94

11 11  0.56  0.54  0.95

12 12  0.65  0.62  0.96

13 13  0.67  0.65  0.97

14 14  0.74  0.73  0.98

15 15  0.70  0.68  0.97

In this case, we assume that anyone who 
scores below 2 on these 2 items is less 
than proficient in the cluster. What we 
want to know is, of those who scored 2 
(p2), what is the probability that they 
knew the answers versus just having 
gotten lucky? (¼ x ¼ = 1/16 = .0625)

At the very bottom of the score 
distribution, more than half of the 2s 
are attributable to guessing. But for 
the rest of the score distribution, 
guessing plays only a small role. 



3.OA.A - continued
Raw Score Segment p2 k2 P(K|2)

16 16  0.83  0.81  0.99

17 17  0.68  0.66  0.97

18 18  0.68  0.66  0.97

19 18 to 20  0.80  0.78  0.98

20 19 to 21  0.88  0.87  0.99

21 20 to 22  0.91  0.90  0.99

22 20 to 24  0.91  0.91  0.99

23+ 20 and up  0.92  0.91  0.99


